74 research outputs found

    A Variational Framework for Structure from Motion inOmnidirectional Image Sequences

    Get PDF
    We address the problem of depth and ego-motion estimation from omnidirectional images. We propose a correspondence-free structure-from-motion problem for sequences of images mapped on the 2-sphere. A novel graph-based variational framework is first proposed for depth estimation between pairs of images. The estimation is cast as a TV-L1 optimization problem that is solved by a fast graph-based algorithm. The ego-motion is then estimated directly from the depth information without explicit computation of the optical flow. Both problems are finally addressed together in an iterative algorithm that alternates between depth and ego-motion estimation for fast computation of 3D information from motion in image sequences. Experimental results demonstrate the effective performance of the proposed algorithm for 3D reconstruction from synthetic and natural omnidirectional image

    Omnidirectional Light Field Analysis and Reconstruction

    Get PDF
    Digital photography exists since 1975, when Steven Sasson attempted to build the first digital camera. Since then the concept of digital camera did not evolve much: an optical lens concentrates light rays onto a focal plane where a planar photosensitive array transforms the light intensity into an electric signal. During the last decade a new way of conceiving digital photography emerged: a photography is the acquisition of the entire light ray field in a confined region of space. The main implication of this new concept is that a digital camera does not acquire a 2-D signal anymore, but a 5-D signal in general. Acquiring an image becomes more demanding in terms of memory and processing power; at the same time, it offers the users a new set of possibilities, like choosing dynamically the focal plane and the depth of field of the final digital photo. In this thesis we develop a complete mathematical framework to acquire and then reconstruct the omnidirectional light field around an observer. We also propose the design of a digital light field camera system, which is composed by several pinhole cameras distributed around a sphere. The choice is not casual, as we take inspiration from something already seen in nature: the compound eyes of common terrestrial and flying insects like the house fly. In the first part of the thesis we analyze the optimal sampling conditions that permit an efficient discrete representation of the continuous light field. In other words, we will give an answer to the question: how many cameras and what resolution are needed to have a good representation of the 4-D light field? Since we are dealing with an omnidirectional light field we use a spherical parametrization. The results of our analysis is that we need an irregular (i.e., not rectangular) sampling scheme to represent efficiently the light field. Then, to store the samples we use a graph structure, where each node represents a light ray and the edges encode the topology of the light field. When compared to other existing approaches our scheme has the favorable property of having a number of samples that scales smoothly for a given output resolution. The next step after the acquisition of the light field is to reconstruct a digital picture, which can be seen as a 2-D slice of the 4-D acquired light field. We interpret the reconstruction as a regularized inverse problem defined on the light field graph and obtain a solution based on a diffusion process. The proposed scheme has three main advantages when compared to the classic linear interpolation: it is robust to noise, it is computationally efficient and can be implemented in a distributed fashion. In the second part of the thesis we investigate the problem of extracting geometric information about the scene in the form of a depth map. We show that the depth information is encoded inside the light field derivatives and set up a TV-regularized inverse problem, which efficiently calculates a dense depth map of the scene while respecting the discontinuities at the boundaries of objects. The extracted depth map is used to remove visual and geometrical artifacts from the reconstruction when the light field is under-sampled. In other words, it can be used to help the reconstruction process in challenging situations. Furthermore, when the light field camera is moving temporally, we show how the depth map can be used to estimate the motion parameters between two consecutive acquisitions with a simple and effective algorithm, which does not require the computation nor the matching of features and performs only simple arithmetic operations directly in the pixel space. In the last part of the thesis, we introduce a novel omnidirectional light field camera that we call Panoptic. We obtain it by layering miniature CMOS imagers onto an hemispherical surface, which are then connected to a network of FPGAs. We show that the proposed mathematical framework is well suited to be embedded in hardware by demonstrating a real time reconstruction of an omnidirectional video stream at 25 frames per second

    The PANOPTIC Camera: A Plenoptic Sensor with Real-Time Omnidirectional Capability

    Get PDF
    A new biologically-inspired vision sensor made of one hundred "eyes” is presented, which is suitable for real-time acquisition and processing of 3-D image sequences. This device, named the Panoptic camera, consists of a layered arrangement of approximately 100 classical CMOS imagers, distributed over a hemisphere of 13cm in diameter. The Panoptic camera is a polydioptric system where all imagers have their own vision of the world, each with a distinct focal point, which is a specific feature of the Panoptic system. This enables 3-D information recording such as omnidirectional stereoscopy or depth estimation, applying specific signal processing. The algorithms dictating the image reconstruction of an omnidirectional observer located at any point inside the hemisphere are presented. A hardware architecture which has the capability of handling these algorithms, and the flexibility to support additional image processing in real time, has been developed as a two-layer system based on FPGAs. The detail of the hardware architecture, its internal blocks, the mapping of the algorithms onto the latter elements, and the device calibration procedure are presented, along with imaging result

    Optical Flow and Depth from Motion for Omnidirectional Images using a TV-L1 Variational Framework on Graphs

    Get PDF
    This paper deals with the problem of efficiently computing the optical flow of image sequences acquired by omnidirectional (nearly full field of view) cameras. We formulate the problem in the natural spherical geometry associated with these devices and extend a recent TV-L1 variational formulation for computing the optical flow. The discretization of differential operators occurring in this formulation turns out to be an extremely sensitive point, in particular for the TV part of our algorithm. We show that these difficulties can be very efficiently overcome using a graph-based formulation of TV denoising, which we solve by introducing a graph version of Chambolle's algorithm. A slight modification of the original framework allows us to solve the depth from motion problem using the same techniques. In both cases, our graph-based algorithms provide computationally efficient solutions and significantly outperform naive implementations based on direct discretization of the operators, or on neglecting the influence of geometry

    Foreground Silhouette Extraction robust to Sudden Changes of background Appearance

    Get PDF
    Vision-based background subtraction algorithms model the intensity variation across time to classify a pixel as foreground. Unfortunately, such algorithms are sensitive to appearance changes of the background such as sudden changes of illumination or when videos are projected in the background. In this work, we propose an algorithm to extract foreground silhouettes without modeling the intensity variation across time. Using a camera pair, the stereo mismatch is processed to produce a dense disparity based on a Total Variation (TV) framework. Experimental results show that with sudden changes of background appearance, our proposed TV disparity-based extraction outperforms intensity-based algorithms and existing stereo-based approaches based on temporal depth variation and stereo mismatch

    Tracking and Structure from Motion

    Get PDF
    Dense three-dimensional reconstruction of a scene from images is a very challenging task. In the structure from motion approach one of the key points is to compute depth maps which contain the distance of objects in the scene to a moving camera. Usually, this is achieved by finding correspondences in successive images and computing the distance by means of epipolar geometry. In this Master's thesis, a variational framework to solve the depth from motion problem for planar image sequences is proposed. Camera ego-motion estimation equations are derived and combined with the depth from motion estimation in a single algorithm. The method is successfully tested on synthetic images for general camera translation. Since it does not depend on the correspondance problem and because it is highly parallelizable, it is well adapted for real-time implementation. Further work in this thesis include a review of general variational methods in image processing, and in particular TV-L1 optical flow as well as its real-time implementation on the graphics processing unit

    A cento anni dalla Grande Guerra. Vol. 1

    Get PDF
    The volumes on the Great War that are here published are the result of a series of seminars held at the Department of Political and Social Sciences of the University of Florence between 2014 and 2015. Starting from the occasion of the centennial, the authors wanted to take stock of some specific aspects of the studies related to the First World War. To this purpose, historians, military analysts, political scientists and sociologists have questioned the meaning of the fracture that marks the beginning of the twentieth century and, consequently, the basic aspects of the new policy of the “short century”, from both an Italian and European perspective

    Situational Awareness Using A Single Omnidirectional Camera

    Get PDF
    To retrieve scene informations using a single omnidirectional camera, we have based our work on a shape from texture method proposed by Lindeberg. To do so, we have adapted the method of Lindeberg, that was developed for planar images, in order to use it on the sphere S2 . The mathematical tools we use are stereographic dilation to implement scale variations for the scale-space representation, and ïŹlter steerability on the sphere to decrease computational order. The texture distortions due to the pro jection from the real world to the image contain the informations that enable shape and orientation to be computed. A multi-scale texture descriptor, the windowed second moment matrix, that contains distorsions informations, is computed and analyzed, with some assumptions about the surface texture to retrieve surface orientation. We have used synthetic signals to evaluate the performances of the adapted method. The obtained results for the distance and shape estimations are good when the textures on the surfaces correspond to the assumptions, generally around the equatorial plane of S2 , but when we move away from the equator, the precision of the estimations decreases signiïŹcantly

    A cento anni dalla grande guerra: Il suicidio dell’Europa

    Get PDF
    Saggi sulla prima guerra mondiale.Essays on World War

    Pemphigus-associated cardiomyopathy: report of autoimmune myocarditis and review of literature

    Get PDF
    Pemphigus is a rare disease characterized by bullous lesions of the skin and mucous membranes. The aetiology is autoimmune and related to the formation of IgG autoantibodies against desmogleins, which are structural proteins of desmosomes that ensure the stability of contacts between cells. Cardiac involvement in patients with pemphigus is poorly documented. We report the data in the literature on this topic and a case of pemphigus-associated autoimmune myocarditis with damage of intercalated disc responding to immunosuppressive therapy. The occurrence of cardiomyopathy with left ventricular dysfunction in patients affected by pemphigus should be appropriately screened with endomyocardial biopsy as it could be the myocardial extension of a potentially reversible autoimmune disorder
    • 

    corecore